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Abstract. We show that Bondal-Orlov’s reconstruction theorem holds in noncommuta-

tive projective geometry. We also prove that fully faithful exact functors between derived

categories of noncommutative projective schemes are of Fourier-Mukai type.

1. Introduction

Whether a scheme is determined by its (derived) category of (quasi-)coherent sheaves is

a fundamental problem in algebraic geometry. The first result in this direction is obtained

by Gabriel.

Theorem 1.1 ([Gab62]). Let X,Y be noetherian schemes.

Coh(X) ≃ Coh(Y ) ⇒ X ≃ Y.

This result means that the category of coherent sheaves on a noetherian scheme de-

termines the scheme. Generalizations of Gabriel’s theorem to more general settings have

been studied by many authors ([Ros98], [Bra18], [Ant16], [CG15] and [Per09]).

In contrast to the case of the category of coherent sheaves, the bounded derived category

of coherent sheaves on a noetherian scheme does not determine the scheme. Mukai first

discovered this fact ([Muk81]). He proved that the bounded derived category of coherent

sheaves on an abelian variety is equivalent to that on the dual abelian variety. On the

other hand, Bondal and Orlov showed that smooth projective varieties with (anti-)ample

canonical bundles are determined by their bounded derived categories of coherent sheaves.

Theorem 1.2 ([BO01, Theorem 2.5]). Let X,Y be smooth projective varieties over a field

k. If the canonical bundles KX ,KY are (anti-)ample, then

Db(Coh(X)) ≃ Db(Coh(Y )) ⇒ X ≃ Y.

Remark 1.3. In Theorem 1.2, actually, it is sufficient to assume that either KX or KY is

(anti-)ample.

This reconstruction theorem has been generalized to some other settings ([Bal11],

[Cal18] and [SS12]). The method of the proof of Theorem 1.2 has also applications such

as determining the groups of autoequivalences of derived categories of coherent sheaves.

On the other hand, Artin and Zhang introduced the notion of noncommutative projec-

tive schemes ([AZ94]) from the viewpoint of the following result by Serre.

Theorem 1.4 ([Ser55]). Let R be a commutative finitely generated graded k-algebra which

is also generated by R1 as R0-algebra. Then,

Coh(Proj(R)) ≃ qgr(R),
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where qgrR is the Serre quotient category of the category grR of finitely generated graded

R-modules by the category torR of finitely generated torsion graded R-modules.

For any (not necessarily commutative) right noetherian N-graded k-algebra R, the non-
commutative projective scheme associated to R is defined as the quotient category qgrR

of the category grR of finitely generated graded right R-modules by the category torR of

finitely generated torsion graded right R-modules. Considering Gabriel’s result and others,

the notion of a noncommutative projective scheme can be considered to be a generaliza-

tion of the notion of a commutative projective scheme. Furthermore, in noncommutative

projective geometry, interesting objects such as Artin-Schelter (AS) regular algebras have

been discovered and actively studied by many researchers.

In this paper, we consider the noncommutative version of Theorem 1.2.

Let k be a field. Let A,B be noetherian (i.e., left and right noetherian) locally fi-

nite N-graded k-algebras. We assume that A,B have balanced dualizing complexes (see

Definition 2.8). A canonical bimodule KA for qgr(A) is a pair (− ⊗ KA,Hom(KA,−))

of autoequivalences of qgr(A) such that for some n ∈ N, the induced autoequivalence

− ⊗ KA[n] of D
b(qgr(A)) gives a Serre functor for Db(qgr(A)) (see Definition 2.11). Let

OA(i) be the object in QGr(A) corresponding to the right graded A-module A(i). The

main theorem in this paper is the following.

Theorem 1.5 (= Theorem 4.18). We assume that qgr(A), qgr(B) have canonical bimod-

ules KA,KB, respectively.

If −⊗KA,−⊗KB are AZ-(anti-)ample (see Definition 4.16), then

Db(qgr(A)) ≃ Db(qgr(B)) ⇒ qgr(A) ≃ qgr(B).

AZ-(anti-)ampleness is a generalization of (anti-)ampleness of line bundles on a projec-

tive scheme in noncommutative projective geometry, which is introduced in [AZ94]. If we

assume that A,B are commutative connected graded k-algebras generated in degree 1,

then Theorem 1.5 recovers Theorem 1.2 since any projective scheme over k is isomorphic

to a projective scheme associated to a commutative connected finitely generated graded

k-algebra generated in degree 1. The result also has an application in the study of AS

regular algebras.

Corollary 1.6 (= Corollary 4.21). Let A,B be noetherian AS-regular algebras over A0, B0,

respectively (see Definition 4.19). Then,

Db(qgr(A)) ≃ Db(qgr(B)) ⇒ qgr(A) ≃ qgr(B).

To prove the corollary, the notion of quasi-Veronese algebras introduced in [Mor13]

is useful. This corollary follows from the observation that a noncommutative projective

scheme associated to a quasi-Veronese algebra of an AS-regular algebra is isomorphic to

the original noncommutative projective scheme and the fact that the canonical bimodule

of the noncommutative projective scheme of an appropriate quasi-Veronese algebra of an

AS regular algebra is AZ-anti-ample. In particular, even when proving the corollary for

connected graded AS-regular algebras, it is necessary to treat locally finite AS-regular

algebras. This is the reason why we prove Theorem 1.5 for noncommutative projective

schemes associated to locally finite graded k-algebras.

We also study Fourier-Mukai functors between derived categories of noncommutative

projective schemes. Let F : Perf(QGr(A)) → D(QGr(B)) be an exact functor. F is called
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of Fourier-Mukai type if there exists an object E ∈ D(QBiGr(Aop⊗B)) such that we have

an isomorphism of functors F (−) ≃ ΦE(−) := πB(RωA(−) ⊗L
A RωAop⊗kB(E)), where A

is the associated dg category to A and ⊗A means the tensor product of dg A -modules.

The objects of A are the integers and the morphism spaces between i, j (i, j ∈ Z) are

HomA(i, j) = Aj−i. Note also that graded right (resp. left) A-modules can be considered

as right (resp. left) dg A-modules (in detail, see Section 3).

We show that exact fully faithful functors between derived categories of noncommutative

projective schemes are of Fourier-Mukai type. In commutative algebraic geometry, whether

exact functors between derived categories of coherent sheaves are of Fourier-Mukai type

is studied in many settings ([Orl97], [LO10], [CS14], [Bal09] etc., see also [CS12]). The

second main theorem in this paper is the following.

Theorem 1.7 (= Theorem 3.10). Let F : Perf(QGr(A)) → D(QGr(B)) be an exact fully

faithful functor. Then, there exists an object E ∈ D(QBiGr(Aop ⊗k B)) such that

(1) ΦE is exact fully faithful and ΦE(P) ≃ F (P) for any P ∈ Perf(QGr(A)).

(2) If F sends a perfect complex to a perfect complex, then the induced functor ΦE :

D(QGr(A)) → D(QGr(B)) is fully faithful and ΦE sends a perfect complex to a

perfect complex.

(3) If R1ΓmA(A) is a finite A-module, then F ≃ ΦE . Moreover, if ΦE ≃ ΦE ′ for some

E ′ ∈ D(QBiGr(Aop ⊗k B)), then E ≃ E ′.

This theorem is a generalization of [LO10, Corollary 9.13] to the setting of noncommuta-

tive projective geometry. In the same way, we can obtain a simpler version of Theorem 1.7.

Proposition 1.8 (= Proposition 3.12). Let Perf(QGr(A)) → D(QGr(B)) be an exact

fully faithful functor. We assume that H0(QGr(A),OA(m)) = 0, m ≪ 0. Then, F is of

Fourier-Mukai type and the Fourier-Mukai kernels are unique up to quasi-isomorphism.

To prove Theorem 1.7, we use methods in [LO10]. In particular, we have to construct an

ample sequence of objects in Perf(QGr(A)) in the sense of Bondal-Orlov ([BO01], [LO10]).

In this paper, ample sequences are referred to as BO-ample sequences to distinguish the

notion of BO-ampleness from that of AZ-ampleness. However, because we cannot use

geometric techniques as in the case of commutative algebraic geometry, we need to use

some other algebraic methods to construct a BO-ample sequence in Perf(QGr(A)). The

notion of quasi-Veronese algebras is again useful. Taking quasi-Veronese algebras means

that we take another polarization of the noncommutative projective scheme. In particular,

considering quasi-Veronese algebra is convenient because higher quasi-Veronese algebras

are generated in degree 1. These discussions including the proof of Theorem 1.7 are in

Section 3.

To prove Theorem 1.5, we use techniques in [BF21]. In [BF21], the authors extended

results in [Toë07] to the setting of noncommutative projective geometry. In Section 4, we

study properties of Fourier-Mukai functors in noncommutative projective geometry. In

the original proof of Theorem 1.2, the notions of point-like objects and invertible objects

by Bondal and Orlov. However, in noncommutative projective geometry, it is difficult

to study these objects. For example, this is because simple objects in qgr(A) are more

complicated than simple objects in Coh(X). Therefore, we use ideas of arguments in

[Huy06, Section 6], where the main technique is the use of Fourier-Mukai functors. By

proving generalized results in [Huy06], we can prove Theorem 1.5.
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2. Preliminaries

In this paper, we work over a field k.

2.1. Dg-categories. We recall basic notions about dg-categories and quasi-functors. We

refer the reader to [Kel06] and [CC21] for good surveys.

A dg category is a k-linear category such that, for all A,B ∈ Ob(A), the morphism

spaces HomA(A,B) are Z-graded k-modules with a differential d : HomA(A,B) →
HomA(A,B) of degree 1 and the composition maps are morphisms of complexes. A dg

functor F : A → B between dg categories is given by a map Ob(A) → Ob(B) and mor-

phisms of complexes of k-modules HomA(A,B) → HomB(F (A), F (B)) compatible with

the compositions and the units. The category with objects dg categories and morphisms

dg functors is denoted by dgCat. Given two dg categories A,B, one can construct the

dg categories Fundg(A,B) and A⊗ B (for detail, see [Kel06, Section 2.3]). The objects of

Fundg(A,B) are dg functors from A to B and the morphisms are dg natural transforma-

tions of dg functors from A to B. The objects of A⊗B are pairs (A,B) of objects A ∈ A
and B ∈ B and the morphisms are given by

HomA⊗B((A,B), (A′, B′)) = HomA(A,A
′)⊗k HomB(B,B

′).

For dg categories A,B, C, we have the natural isomorphism

Fundg(A⊗ B, C) ≃ Fundg(A,Fundg(B, C)).

For a dg categories A, we denote by Z0(A) and H0(A) the standard category and the

homotopy category of A, respectively. Z0(A) and H0(A) are the categories with the same

objects as those of A and morphisms

HomZ0(A)(A,B) = Z0(HomA(A,B)), HomH0(A)(A,B) = H0(HomA(A,B)).

For a dg-category A, Aop denotes the opposite category of A. Its objects are the same as

those of A and for all A,B ∈ Ob(A), the morphisms are defined by

HomAop(A,B) = HomA(B,A).

The composition of f ∈ HomAop(A,B) and g ∈ HomAop(B,C) is defined by

(−1)deg(f) deg(g)fg.

For a dg category A, we define a right dg A-module as a dg-functor Aop → Cdg(k),

where Cdg(k) is the dg category of complexes of k-modules. A left dg A-module is a dg

functor A → Cdg(k). Let B be another dg category. A dg A-B-bimodule is a dg functor

A ⊗ Bop → Cdg(k). We set dgMod(A) = Fundg(Aop, Cdg(k)). When we simply say a dg

A-module, we mean a right dg A-module. We denote by Acydg(A) the full dg subcategory

of dgMod(A) consisting of acyclic dg modules. The dg derived category Ddg(A) is the

dg quotient dgMod(A)/Acydg(A). The derived category D(A) is the Verdier quotient

H0(dgMod(A))/H0(Acydg(A)). For each object X ∈ A, we have the right dg module

YA(X) representable by X, which induces the dg Yoneda functor

YA : A → dgMod(A), X 7→ YA(X) := A(−, X).

We denote by Ā ⊂ h-proj(A) the full dg subcategory with objects the dg modules which

are homotopy equivalent to objects in the image of YA.
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A dg-module is free if it is isomorphic to a direct sum of dg-modules of the form

YA(X)[n], where X ∈ A and n ∈ Z. A dg-module M is semi-free if it has a filtration

0 =M0 ⊂M1 ⊂ · · · ⊂Mi ⊂ · · · ⊂M

such that Mi/Mi−1 is free for all i. The full dg subcategory of semi-free dg modules is

denoted by SF(A). A semi-free dg moduleM is finitely generated ifMn =M for some n ∈
N and Mi/Mi−1 is a finite direct sum of dg modules of the form YA(X)[n]. A dg module

M is perfect if it is homotopy equivalent to a direct summand of a finitely generated semi-

free dg module. We denote by Perfdg(A) the full dg subcategory of dgMod(A) consisting

of perfect dg modules. For a dg-module P , P is called h-projective if

H0(HomdgMod(A)(P,N)) = 0

for every acyclic dg module N . We denote by h-proj(A) the full dg subcategory of

dgMod(A) consisting of h-projective dg modules. Note that we have the canonical dg

functors

SF(A) ↪→ h-proj(A) ↪→ dgMod(A),

which induce the equivalences

H0(SF(A)) ≃ H0(h-proj(A)) ≃ D(A).

Definition 2.1. Let T be a triangulated category that admits arbitrary direct sums. An

object X ∈ T is called compact if the functor HomT (X,−) commutes with arbitrary direct

sums. We denote by T c the full subcategory of compact objects in T . Let S ⊂ Ob(T c) is

called a set of compact generators if any object Y in T such that HomT (X,Y [n]) = 0 for

all X ∈ S and all n ∈ Z is the zero object.

Example 2.2 (See also [LO10, Example 1.9]). Let A be a dg-category. The set

{YA(X)}X∈A is a set of compact generators for D(A). The subcategory D(A)c of compact

objects coincides with the subcategory Perf(A) of perfect dg modules.

Let M ∈ dgMod(A) and N ∈ dgMod(Aop). Then, the tensor product M ⊗A N is

defined as

M ⊗A N := Cok

Ξ :
⊕

A,B∈A
M(A)⊗k HomA(B,A)⊗k N(B) →

⊕
C∈A

M(C)⊗k N(C)

 ,

where

Ξ((m, f, n)) :=M(f)(m)⊗ n− (−1)deg(m) deg(f)m⊗N(f)(n)

∈ (M(A)⊗k N(A))⊕ (M(B)⊗k N(B)).

In addition, let M ∈ dgMod(Aop ⊗ B) and N ∈ dgMod(Bop ⊗ C). Then, the tensor

product M ⊗B N ∈ dgMod(Aop ⊗ C) is defined as

(M ⊗B N)(A,C) :=M(A,−)⊗B N(−, C)

for any A ∈ A and C ∈ C.

Definition 2.3 (See also [Gen17, Definition 3.2, Propostion 3.6]). Let F : Aop ⊗ A →
Cdg(k) be a dg A-A-bimodule. The coend

∫ A∈A
F (A,A) of F is defined by
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∫ A∈A
F (A,A) := Cok

 ⊕
A,B∈A

A(B,A)⊗ F (A,B) →
⊕
C∈A

F (C,C)

 ,

f ⊗ x 7→ f · x− (−1)deg(f) deg(x)x · f.

Example 2.4 (See also [Dri04, Appendix C.3], [Ima24, Example 2.13]). Let M,N be a

right and left dg A-module, respectively. Then,

M ⊗A N =

∫ A∈A
M(A)⊗k N(A).

Given two dg cateogries A,B, then there is an isomorphism of dg-categories

dgMod(Aop ⊗ B) ≃ Fundg(A,dgMod(B)). So, for an object E ∈ dgMod(Aop ⊗ B), we
have a corresponding dg functor ΨE : A → dgMod(B). Conversely, let F : A → B be a dg

functor. Then, there exists a unique E ∈ dgMod(Aop ⊗ B) such that ΨE = F .

Let F : A → dgMod(B) be a dg functor corresponding to E ∈ dgMod(Aop ⊗ B).
Following [CS15, Section 3.1], we define the extension and restriction of F . The extension

of F is the dg functor F ∗ : dgMod(A) → dgMod(B) defined by F ∗(−) := − ⊗A E. The

restriction of F is the dg functor F∗ : dgMod(A) → dgMod(B) defined by F∗(−) :=

HomA(F (−), E). The dg functors (F ∗, F∗) are adjoint to each other: for M ∈ dgMod(A)

and N ∈ dgMod(B), we have the natural isomorphism

HomdgMod(B)(F
∗(M), N) ≃ HomdgMod(A)(M,F∗(N)).

Let M be a dg A-B-bimodule. Then, M is right quasi-respresentable or a quasi-functor if

the dg B-moduleM(A,−) is quasi-representable for all A ∈ A, i.e., M(A,−) is isomorphic

to a representable dg B-module in D(B) for all A ∈ A.

2.2. Noncommutative projective geometry. We recall basic notions about noncom-

mutative projective geometry introduced in [AZ94].

Let A =
⊕

i∈ZAi be a Z-graded k-algebra. We denote by Aop the opposite algebra of A

and define the enveloping algebra Aen = A ⊗k A
op. We denote by Gr(A) the category of

graded right A-modules with morphisms the A-module homomorphisms of degree 0 and

by gr(A) the full subcategory of finitely generated graded right A-modules. For a graded

right A-module M , we define the Matlis dual M ′ ∈ Gr(Aop) by M ′
i := Homk(M−i, k). For

an integer n ∈ Z, we define the truncation M≥n(resp. M≤n) ∈ Gr(A) by M≥n =
⊕

i≥nMi

(resp. M≤n =
⊕

i≤nMi) and the shift M(n) ∈ Gr(A) by M(n)i = Mi+n. We say

that M is right (respectively, left) bounded if there exists n ∈ Z such that M≥n = 0

(respectively, M≤n = 0). We say that M is bounded if it is both right and left bounded.

For M,N ∈ Gr(A), we write the graded vector space

HomA(M,N) :=
⊕
n∈Z

HomGr(A)(M,N(n)), ExtiA(M,N) :=
⊕
n∈Z

ExtiGr(A)(M,N(n)) (i ≥ 0).

An N-graded k-algebra A is called noetherian if A is right and left noetherian.

Let A be an N-graded k-algebra. If A0 = k, then A is called connected. If Ai is a

finite-dimensional k-vector space for all i ∈ N, then A is called locally finite. In particular,

if A is right noetherian and A0 is finite dimensional, then A is locally finite. We often refer

to a connected N-graded k-algebra simply as a connected graded k-algebra when there is

no confusion. We assume that A is a noetherian N-graded k-algebra. For M ∈ Gr(A), an

element m ∈ M is called torsion if there exists n ∈ N such that mA≥n = 0. When any
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element ofM is torsion, we say thatM is a torsion module. Denote by Tor(A) (respectively,

tor(A)) the full subcategory of Gr(A) (respectively, gr(A)) consisting of torsion modules.

We write QGr(A) (respectively, qgr(A)) for the quotient category of Gr(A) (respectively,

gr(A)) by Tor(A). We write πA for the projection functor and ωA for its right adjoint.

We also denote the composition QA := ωAπA. We denote by τA the functor that takes

M ∈ Gr(A) to the submodule of M consisting of torsion elements. Note that we have

isomorphisms of graded right A-modules (cf. [AZ94, page 246])

QA(M) ≃ lim
n→∞

Hom(A≥n,M), τA(M) ≃ ΓmA(M) := lim
n→∞

Hom(A/A≥n,M).

We define the Serre twisting sheaf OA(n) := πA(A(n)) for n ∈ Z.

Definition 2.5 ([AZ94, Definition 3.2]). Let A be a locally fnite noetherian N-graded
k-algebra. We say that A satisfies the χ-condition if for any M ∈ gr(A), Exti(A0,M) is

bounded for all i ∈ Z. We say that A satisfies χop-condition if Aop satisfies the χ-condition.

Definition 2.6 ([MU21, Definition 2.6]). For a locally finite N-graded algebra A, we say

that A satisfies the condition (EF) if every dimensional graded right A-moduleM is graded

right coherent (i.e., M is finitely generated and every finitely generated graded submodule

of M is finitely presented).

Remark 2.7 ([MU21, Page 501]). When A is a connected graded k-algebra, the condition

(EF) is equivalent to the condition that A is Ext-finite. In addition, A right coherent

N-graded k-algebra A satisfies the condition (EF). If a locally finite N-graded k-algebra A
satisfies the condition (EF), then RΓmA(−) commutes with direct limits ([MU21, Lemma

2.17]). By using this property, it is proved that the local duality theorem holds for a

locally finite N-graded k-algebra A satisfying the condition (EF) ([MU21, Theorem 2.18]).

In additon, we can show that RiΓmA(M) = 0 for all i > 0 and a graded torsion right

A-module M by also using [AZ94, Proposition 3.1 (5)] (cf. [MN21, Lemma 5.10], [VdB97,

Lemma 4.4])

Definition 2.8 (cf. [VdB97, Definitions 6.1 and 6.2], [Yek92, Definitions 3.3 and 4.1]).

Let A be a noetherian locally finite N-graded k-algebra. A dualizing complex for A is a

complex R ∈ D(Gr(Aen)) such that

(1) R has finite injective dimension over A and Aop,

(2) the cohomologies of R are finitely generated as both right and left A-modules,

(3) the natural morphisms A → RHomA(R,R) and A
op → RHomAop(R,R) are iso-

morphisms in D(Gr(Aen)).

R is called balanced if RΓmA(R) ≃ A′ and RΓmAop (R) ≃ Aop′ in D(Gr(Aen)).

Theorem 2.9 (cf. [VdB97, Theorem 6.3]). A noetherian locally finite N-graded k-algebra
A has a balanced dualizing complex if and only if

(1) A satisfies the χ-condition and χop-condition,

(2) ΓmA and ΓmAop have finite cohomologial dimension.

In this case, the balanced dualizing complex RA is given by RA = RΓmA(A)
′.

Proof. In [VdB97], the author proved the existence of a balanced dualizing complex for a

noetherian connected graded k-algebra. However, one can check that the proof works for

a noetherian locally finite N-graded k-algebra as stated in [RRZ14, Proof of Lemma 3.5].

In particular, Ext-finiteness of a connected graded k-algebra is replaced by the condition

(EF) for a locally finite N-graded k-algebra. See also [WZ01] or [CWZ02]. To be sure,
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we provide further details below. In [YZ97, Theorem 4.2 (3)], the authors proved the

conditions (1) and (2) from the existence of a balanced dualizing complex for a connected

graded k-algebra. In their proof, the key theorem is [Yek92, Theorem 4.18]. The proof

of [Yek92, Theorem 4.18] works for a locally finite N-graded k-algebra and we can prove

the conditions (1) and (2) from the existence of a balanced dualizing complex for a locally

finite N-graded k-algebra in the same way. □

For an abelian category C, the global dimension gl.dim(C) of C is the maximal integer

n such that there exist X,Y ∈ C with Extn(X,Y ) ̸= 0.

In the same way as in Theorem 2.9, we can prove [DNVB04, Theorem A.4] for a noe-

therian locally finite N-graded k-algebra (see also [MM11, Proof of Theorem 4.12]).

Theorem 2.10 (cf. [DNVB04, Theorem A.4]). Let A be a noetherian locally finite N-
graded k-algebra. We assume that A has a balanced dualizing complex RA and the global

dimension of qgr(A) is finite. Then, the functor

SA : Db(qgr(A)) → Db(qgr(A)),

πA(M) 7→ π(M ⊗L
A RA)[−1]

is the Serre functor for Db(qgr(A)).

An algebraic triple consists of a k-linear category C, an object O ∈ C and a k-linear auto

equivalence s of C. In this case, we also say that (O, s) is an algebraic pair for C. For two
algebraic triples (C,O, s), (C′,O′, s′), a morphism of algebraic triples (F, θ, µ) : (C,O, s) →
(C′,O′, s′) consists of a k-linear functor F : C → C′, an isomorphism θ : F (O) → O′ and a

natural isomorphism µ : F ◦ s→ s′ ◦F . We say that (F, θ, µ) is an isomorphism if F is an

equivalence of categories. For an algebraic triple (C,O, s), we define a Z-graded k-algebra
B(C,O, s) by

B(C,O, s) :=
⊕
n∈Z

HomC(O, sn(O)).

In this paper, the main example of algebraic triples is (qgr(A),OA, (1)A), where A is

a noetherian locally finite N-graded k-algebra, OA = πA(A) and (1)A is the degree shift

functor.

Definition 2.11 ([MU21, Definition 3.3, 3.4]). Let C be an abelian category. A bimodule

M over C is an adjoint pair of functors from C to itself with suggestive notation

M = (−⊗M,Hom(M,−)).

A bimodule M is called invertible if −⊗M is an equivalence of C. An invertible bimod-

ule M is called a canonical bimodule for C if there exists n ∈ Z such that the induced

autoequivalence −⊗M[n] of Db(C) is a Serre functor for Db(C). We denote the canonical

bimodule by KC . When C = qgr(A) for a noetherian locally finite N-graded k-algebra A,
we often write the canonical bimodule simply by KA.

Remark 2.12 (See also [MU21, Remark 3.5]). If C has a canonical bimodule and −⊗KC [n]

is the Serre functor for Db(C), then gl. dim(C) = n <∞.

In our study, we need to consider noncommutative projective schemes associated to

N2-graded algebras. Let C :=
⊕

i,j≥0Ci,j be an N2-graded k-algebra. We introduce

notions related to N2-graded algebras and noncommutative projective schemes associated

to N2-graded algebras following [BF21]. C is called connected if C0,0 = k. C is called
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locally finite if Ci,j is a finite-dimensional k-vector space for all i, j ∈ N. We denote

by BiGr(C) the category of Z2-graded right C-modules. We often say graded for Z-
graded and bigraded for Z2-graded. Let M ∈ BiGr(C). We denote by Cop the opposite

algebra of C and define the enveloping algebra Cen = C ⊗k C
op. For n1, n2 ∈ Z, we

define the truncation M≥n1,≥n2 (respectively, M≤n1,≤n2) by M≥n1,≥n2 =
⊕

i≥n1,j≥n2
Mi,j

(respectively, M≤n1,≤n2 =
⊕

i≤n1,j≤n2
Mi,j) and the shift M(n1, n2) by M(n1, n2)i,j =

Mi+n1,j+n2 .

Our main example of N2-graded k-algebras is the tensor product A⊗k B of two locally

finite N-graded k-algebras A,B. Note that when A,B are noetherian locally finite N-
graded k-algebras, then in general, A⊗k B is not noetherian, but only finitely generated

as a k-algebra (cf. [Yek20, Remark 15.1.30]). We have a canonical way to produce graded

A-modules and graded B-modules from a bigraded A⊗k B-module: For fixed u, v ∈ Z,

(−)∗,v : BiGr(A⊗k B) → Gr(A), M 7→M∗,v :=
⊕
i∈N

Mi,v,

(−)u,∗ : BiGr(A⊗k B) → Gr(B), M 7→Mu,∗ :=
⊕
j∈N

Mu,j .

Notice that the forgetful functors UA, UB also induces the functors UA, UB from BiGr(A⊗k

B) to Gr(A),Gr(B), respectively:

UA : BiGr(A⊗k B) → Gr(A), M 7→ UA(M) :=
⊕
u∈Z

Mu,∗,

UB : BiGr(A⊗k B) → Gr(B), M 7→ UB(M) :=
⊕
v∈Z

M∗,v.

If A,B are finitely generated, then we also have functors:

Q′
A : BiGr(A⊗k B) → BiGr(A⊗k B), M 7→ Q′

A(M) :=
⊕
v∈Z

QA(M∗,v),

Q′
B : BiGr(A⊗k B) → BiGr(A⊗k B), M 7→ Q′

B(M) :=
⊕
u∈Z

QB(Mu,∗).

Note that for a bigraded module M , we have the following isomorphisms of graded A-

modules and graded B-modules ([BF21, Lemma 3.17]):

Q′
A(M) ≃ QA ◦ UA(M), Q′

B(M) ≃ QB ◦ UB(M).

In particular, QA ◦UA(M) and QB ◦UB(M) have bigraded A⊗k B-module structures. A

similar argument holds for τA and τB.

Let A,B be finitely generated locally finite N-graded k-algebras and M be a bigraded

A ⊗k B-module. Then, m ∈ M is called torsion if there exist n1, n2 ∈ Z such that

m(A⊗k B)≥n1,≥n2 = 0. We call M ∈ BiGr(A⊗k B) a torsion module if every element of

M is torsion. We denote by Tor(A⊗k B) the full subcategory of BiGr(A⊗k B) consisting

of torsion modules.

Lemma 2.13 (cf. [BF21, Lemma 3.19]). Tor(A⊗kB) is a Serre subcategory of BiGr(A⊗k

B).

Proof. In [BF21, Lemma 3.19], the author proved the lemma for connected N2-graded

k-algebras. We can prove the lemma for locally finite N2-graded k-algebras by the same

argument. □
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We denote by QBiGr(A⊗k B) the quotient category of BiGr(A⊗k B) by Tor(A⊗k B).

We also denote by πA⊗kB the projection functor and ωA⊗kB the right adjoint of πA⊗kB.

We also denote the composition QA⊗kB := ωA⊗kB ◦ πA⊗kB.

3. Fourier-Mukai functors in noncommutative projective geometry

Let A be an N-graded k-algebra. We denote by Cdg(Gr(A)) the dg category of complexes

of graded right A-modules. We associate to a Z-graded k-algebra A the category A with

objects the integers Z and morphisms given by HomA(i, j) = Aj−i. We naturally regard

A as a dg category. Then, we have an equivalence of dg categories

Cdg(Gr(A)) ≃ dgMod(A)

from [BF21, Lemma 3.50]. A similar argument holds for the Z2-graded case. Let M ∈
Gr(A) and N ∈ Gr(Aop). If we think of M,N as right and left dg A-modules by using

the above equivalence, respectively, then the tensor product M ⊗A N of dg modules is

the same as the Z-algebra tensor product (see also [MN21, Section 4.1]). In this case, we

denote by Mod(A) the abelian category of right A-modules. We also denote by Tor(A) the

full subcategory of Mod(A) consisting of torsion modules. Tor(A) is a Serre subcategory

of Mod(A) and we denote by QMod(A) the quotient category of Mod(A) by Tor(A). It is

known that Gr(A),Tor(A) and QGr(A) are equivalent to Mod(A),Tor(A) and QMod(A),

respectively ([LO10, Page 885, 886] or [MN23, Lemma 2.17]). We also note that we have

the equivalence

D(QGr(A)) ≃ D(A)/DTor(A),

where DTor(A) ⊂ D(A) is the full subcategory consisting of the objects

whose cohomologies are in Tor(A) ([LO10, Lemma 7.2]). Let Ddg(QGr(A)) :=

Cdg(QGr(A))/Acydg(QGr(A)), where Acydg(QGr(A)) is the dg subcategory of acyclic

complexes in Cdg(QGr(A)). Then, we have the quasi-equivalences of dg categories

Ddg(QGr(A)) ≃ Ddg(A)/DTor,dg(A),

where DTor,dg(A) is the dg subcategory of Ddg(A) consisting of the objects whose co-

homologies are in Tor(A). We define Perfdg(QGr(A)) to be the full dg subcategory of

Ddg(QGr(A)) consisting of the compact objects in H0(Ddg(QGr(A))).

Definition 3.1 ([BO01, Definition A.1], [LO10, Definition 9.4]). Let C be a k-linear exact

category. Let {Pi}i∈Z be a sequence of objects in C. Then, the sequence {Pi}i∈Z is called

BO (Bondal-Orlov)-ample if there exists an exact embedding C ⊂ C′ in an abelian category

C′ such that

(1) a morphism in C is an admissible epimorphism if and only if it is an epimorphism

in C′ (we call this condition (EPI)),

(2) for every M ∈ C′, there exists n0 such that for all n < n0, the following hold:

(a) there is an epimorphism P⊕mn
n → M for some mn ∈ N,

(b) ExtiC′(Pn,M) = 0 for all i > 0,

(c) HomC′(M,Pn) = 0.

Let Ddg(BiGr(Aop ⊗k B)) be a dg enhancement of D(QBiGr(A⊗k B)). The following

theorem is essential for our study.
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Theorem 3.2 (cf. [BF21, Theorem 4.15]). Let A,B be noetherian locally finite N-graded
k-algebras. If A,B have balanced dualizing complexes, then we have an equivalence of dg

categories

Ddg(QBiGr(Aop ⊗k B))
∼−→ RHomc(Ddg(QGr(A)), Ddg(QGr(B))),

E 7−→ Φdg
E (−) := πB(RωA(−)⊗L

A RωAop⊗kB(E)),

where RHomc denotes the dg category formed by the direct sums preserving quasi-functors.

Proof. In [BF21], the author proved the theorem for noetherian connected graded k-

algebras. However, the same proof works for noetherian locally finite N-graded k-algebras.
This situation is exactly the same as in the proof of Theorem 2.9. □

Remark 3.3. For noetherian locally finite N-graded k-algebras A,B, the condition that

A,B have balanced dualizing complexes is the same as the condition that the pair (A,B)

is a delightful couple in the sense of [BF21].

Notation 3.4. Let A,B be as in Theorem 3.2. We denote by ΦE the associated (Fourier-

Mukai) functor between D(QGr(A)) and D(QGr(B)).

Let A be a right noetherian locally finite N-graded k-algebra. Then, we have the

following diagram:

Db(loc(qgr(A))) Db(qgr(A)) Perf(QGr(A))

Db
qgr(A)(QGr(A)) D(QGr(A)) D(QGr(A))c,

ι

∼ ∼

i1 i2

where loc(qgr(A)) := Perf(QGr(A)) ∩ qgr(A) ⊂ qgr(A) is an exact category, the vertical

arrows are equivalences ([BVB02, Lemma 4.3.3], Example 2.2), the horizontal arrows i1, i2
in the bottom row are fully faithful and ι : Db(loc(qgr(A))) → Db(qgr(A)) is a natural

functor. Note that if gl.dim(QGr(A)) < ∞, then we have an equivalence Db(qgr(A)) ≃
Perf(QGr(A)) ([BVB02, Lemma 4.3.2]).

Remark 3.5. In [BVB02], the authors proved [BVB02, Lemma 4.3.2, Lemma 4.3.3] and

[BVB02, Lemma 4.2.2] (we use this lemma below) only for connected graded k-algebras.

However, the same proofs work for locally finite N-graded k-algebras because we can use

the results in Remark 2.7.

The following lemma is basic.

Lemma 3.6. Let A be a right noetherian locally finite N-graded k-algebra. Then, we have

the following.

(1) ι : Db(loc(qgr(A))) → Db(qgr(A)) is fully faithful.

(2) Db(loc(qgr(A))) is equivalent to Perf(QGr(A)).

Proof. (1) From [LO10, Remark 9.5], it is enough to show that

(a) (EPI) holds in loc(qgr(A)) ⊂ qgr(A) and

(b) for any M ∈ qgr(A), there exists an epimorphism E ↠ M for some E ∈
loc(qgr(A)).
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Let E1, E2 ∈ loc(qgr(A)). Let f : E1 → E2 be an epimorphism in qgr(A). Then,

Ker(f)[1] ≃ Cone(f) in D(QGr(A)). Since D(QGr(A))c is a full triangulated subcate-

gory of D(QGr(A)), we have Ker(f) ∈ D(QGr(A))c. This means that (a) holds. (b)

follows from the fact OA(n) is a compact object for any n ∈ Z and [AZ94, Proposition 4.4

(1)].

(2) Let F := (· · · → 0 → Fa → · · · → Fb → 0 → · · · ) ∈ Db(loc(qgr(A))), where

a ≤ b and Fa,Fb ̸= 0. Let σ>iF := (· · · → 0 → F i+1 → F i+2 → · · · ) be the i-th stupid

truncation of F . Then, we have a distinguished triangle

σ>aF → F → Fa → σ>aF [1].

So, if σ>aF ∈ D(QGr(A))c, then F ∈ Perf(QGr(A)). By induction, we have any

F ∈ Db(loc(qgr(A))) is compact in D(QGr(A)). In particular, i1 ◦ ι factors through

D(QGr(A))c.

From (1), it is enough to show that i1 ◦ ι : Db(loc(qgr(A))) → D(QGr(A))c is essentially

surjective. To prove this, we use the idea of the proof of [Stacks, Lemma 36.37.1]. Firstly,

by [BVB02, Lemma 4.2.2], we have D(QGr(A))c = ⟨OA(n)⟩n∈Z, i.e., D(QGr(A))c is classi-

cally generated by {OA(n)}n∈Z. So, D(QGr(A))c can be thought as a full triangulated sub-

category of Db(qgr(A)). Let F = (· · · → 0 → Fa → · · · → Fb → 0 → · · · ) ∈ D(QGr(A))c,

where a ≤ b and Fa,Fb ̸= 0. We prove that there exists E ∈ Db(loc(qgr(A))) and a

quasi-isomorphism E → F by induction on b − a. When b − a = 0, the claim is clear.

Assume that the claim holds for b − a < n. There exists an epimorphism Eb ↠ Fb for

some Ẽb ∈ loc(qgr(A)) by the fact OA(n) ∈ loc(qgr(A)) and [AZ94, Proposition 4.4 (1)].

Then, we have a morphism α : Ẽb[−b] → F of chain complexes of objects in qgr(A) and a

distinguished triangle

Ẽb[−b] → F → Cone(α)

in D(QGr(A)). By taking the long exact sequence, it is shown that H i(Cone(α)) ̸= 0

implies i ∈ [a, b−1]. Considering appropriate standard truncations, we have Cone(α) ≃ E ′

for some E ′ = (· · · → 0 → E ′a → · · · → E ′b−1 → 0 → · · · ) ∈ Db(qgr(A)). From the

induction hypothesis, we also have an quasi-isomorphism β : E ′′ → Cone(α) for some

E ′′ ∈ Db(loc(qgr(A))). Finally, we put E := E ′′⊕Ẽb[−b] and the natural morphism E → F
is a quasi-isomorphism. This completes the proof. □

We recall the notion of quasi-Veronese algebras to construct a sequence of objects in

loc(qgr(A)) which is BO-ample.

Definition 3.7 ([Mor13, Definition 3.7]). Let A be an N-graded k-algebra and r ∈ N. We

define the r-th quasi-Veronese algebra A[r] of A by

A[r] :=
⊕
i∈N


Ari Ari+1 · · · Ari+l−1

Ari−1 Ari · · · Ari+l−2
...

...
. . .

...

Ari−l+1 Ari−l+2 · · · Ari.

 .

We recall basic properties of quasi-Veronese algebras.

Lemma 3.8 ([Mor13, Lemma 3.9], [Miz24, Remark 3.19, Lemma 3.20]). Let A be an

N-graded k-algebra. Then, we have the following.
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(1) the functor

qV : Gr(A) → Gr
(
A[r]

)
, M 7→

⊕
i∈Z

r−1⊕
j=0

Mri−j


is an equivalence. In particular, qV (

⊕r−1
i=0 A(i)) = A[r].

(2) if A is right noetherian, then A[r] is also right noetherian. Moreover, the equiva-

lence in (1) gives an equivalence of categories between qgr(A) and qgr
(
A[r]

)
.

(3) If A is finitely generated as an A0-algebra, then for large enough r ∈ N, A[r] is

generated by A
[r]
1 as an A

[r]
0 -algebra.

We construct a sequence of objects in loc(qgr(A)) which is BO-ample in the following

lemma.

Lemma 3.9. Let A be a right noetherian locally finite N-graded k-algebra. If A satisfies

the χ-condition and R1ΓmA(A) is a finite A-module, then for large enough r ∈ N, the

sequence {
⊕r−1

i=0 OA(i+ rn)}n∈Z is BO-ample in loc(qgr(A)).

Proof. We verify the conditions (1), (2) in Definition 3.1. We have already shown that

(EPI) holds in loc(qgr(A)) in the proof of (1) of Lemma 3.6.

Regarding (a) of (2), for any M ∈ qgr(A), there exists an epimorphism

ψ :

p⊕
i=1

OA(−li)⊕ni ↠ M

for some li, ni ∈ N. On the other hand, if r is large enough, then A[r] is generated by A
[r]
1

as an A
[r]
0 -algebra by Lemma 3.8 (3). So, we have an surjective morphism A[r](−1)⊕n ↠(

A[r]
)
>0

for some n ∈ N in Gr
(
A[r]

)
. If we put ÕA(i) = πA[r]

(
A[r](i)

)
, then we have an

epimorphism

ÕA(−1)⊕n ↠ ÕA

in qgr
(
A[r]

)
. We also put Li =

⊕r−1
j=0 OA(j+ ir). Then, qV (Li) = ÕA(i) from Lemma 3.8

(1). So, we have an epimorphism φ : L⊕n
−1 ↠ L0 from Lemma 3.8 (2). Here, ψ induces an

epimorpshim

ψ′ :

p⊕
i=1

L⊕ni
−ki

↠ M

for some ki ∈ N. Thus, by using φ and the degree shift functor, we also have an epimor-

phism L⊕n′

−k ↠ M for some k, n′ ∈ N. Moreover, for any n′′ < n′, we have an epimorphism

L⊕n′′

−k′ ↠ M for some k′ ∈ N by using φ and the degree shift functor again. Hence, (a)

holds.

(b) follows from the assumption A satisfies the χ-condition and the noncommutative

Serre vanishing theorem [AZ94, Theorem 7.4].

Regarding (c), for any M ∈ qgr(A), we have an epimorphism f : L⊕n
−k ↠ M for some

k, n ∈ N and the long exact sequence

0 → Homqgr(A)(M, Ll) → Homqgr(A)(L−k, Ll)
⊕n → Homqgr(A)(Ker(f), Ll) → · · ·

for any l ∈ Z. So, it is enough to show that H0(qgr(A), Ll) =
⊕r−1

i=0 H
0(qgr(A),OA(i +

rl)) = 0 for l ≪ 0. Here, we have the canonical exact sequence

0 → ΓmA(A) → A→ Q(A) → R1ΓmA(A) → 0. (⋆)
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Note that Q(A) ≃
⊕

i∈ZHom(OA,OA(i)). Since A satisfies the χ-condition, R1ΓmA(A)

is right bounded ([AZ94, Proposition 3.14]). Moreover, from the assumption, R1ΓmA(A)

is a finite A-module, so R1ΓmA(A) is also left bounded. This implies that Q(A) is left

bounded and H0(qgr(A),OA(i)) = 0 for i≪ 0. Hence, H0(qgr(A), Ll) = 0 for l ≪ 0. This

completes the proof.

□

We are now ready to prove the main theorem about Fourier-Mukai functors in noncom-

mutative projective geometry.

Theorem 3.10. Let A,B be noetherian locally finite N-graded k-algebras. We assume

that A,B have balanced dualizing complexes. Let F : Perf(QGr(A)) → D(QGr(B)) be an

exact fully faithful functor. Then, there exists an object E ∈ D(QBiGr(Aop ⊗k B)) such

that

(1) ΦE is exact fully faithful and ΦE(P) ≃ F (P) for any P ∈ Perf(QGr(A)).

(2) If F sends a perfect complex to a perfect complex, then the induced functor ΦE :

D(QGr(A)) → D(QGr(B)) is fully faithful and ΦE sends a perfect complex to a

perfect complex.

(3) If R1ΓmA(A) is a finite A-module, then F ≃ ΦE . Moreover, if ΦE ≃ ΦE ′ for some

E ′ ∈ D(QBiGr(Aop ⊗k B)), then E ≃ E ′.

Proof. Thanks to proving Lemma 3.6 and Lemma 3.9, the proof is similar to the proof of

[LO10, Corollary 9.13]. We give a sketch of the proof for the reader’s convenience.

Step 1: Construction of E.
Here, we describe how to construct E . Firstly, note that we have D(QGr(A)) ≃

D(A)/DTor(A) and Perf(QGr(A)) ≃ (D(A)/DTor(A))
c. We also have quasi-equivalences

([LO10, Proposition 1.17])

ϕA : Ddg(QGr(A))
∼−→ SF(Perfdg(QGr(A))), ϕB : Ddg(QGr(B))

∼−→ SF(Perfdg(QGr(B))).

(†)

We denote C by the full dg subcategory of Perfdg(QGr(B)) which consists of the objects in

the essential image of H0(ϕB) ◦ F . Then, the functor H0(ϕB) ◦ F induces an equivalence

G : Perf(QGr(A)) → H0(C).

By [LO10, Theorem 6.4], we have a quasi-equivalnce

G̃ : Perfdg(QGr(A)) → C.

This functor induces a quasi-equivalence

G̃∗ : SF(Perfdg(QGr(A))) → SF(C).

Let D be a dg subcategory of SF(C) that contains C and Perfdg(QGr(B)). We denote by

I1 : C ↪→ D, I2 : Perfdg(QGr(B)) ↪→ D

the embedding functors. Then, we have the extension and the restriction functors

I∗1 : SF(C) → SF(D), I2∗ : SF(D) → SF(Perfdg(QGr(B))),

respectively. The functors H0(I∗1 ), H
0(I2∗) and H

0(G̃∗) commute with direct sums. Here,

we define a quasi-functor

F̃ := ϕ−1
B ◦ I2∗ ◦ I∗1 ◦ G̃∗ ◦ ϕA : Ddg(QGr(A)) → Ddg(QGr(B)).
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This functor commutes with direct sums. Thus, there exists an object E ∈ D(QGr(Aop⊗k

B)) such that Φdg
E ≃ F̃ by Theorem 3.2.

Step 2: Proof of (1), (2) and (3).

(1) Because (I2∗◦I∗1 )|C is isomorphic to the inclusion functor C ↪→ SF(Perfdg(QGr(B))),

ΦE |Perf(QGr(A)) is fully faithful. By [LO10, Theorem 6.4 (3)], we have an isomorphism

H0(G̃)(M) ≃ G(M) for any M ∈ Perf(QGr(A)). Thus, ΦE(M) ≃ F (M) for any M ∈
Perf(QGr(A)).

(2) If F sends a perfect complex to a perfect complex, then we can take D as

SF(Perfdg(QGr(B))). In this case, I2∗ is the identity and I∗1 is fully faithful ([LO10,

Proposition 1.15]). This implies the assertion.

(3) From [LO10, (2) of Theorem 6.4], we have an isomorphism of functors

θ : H0(G̃) ◦ π ◦YA → G ◦ π ◦YA,

where the compositions of the above functors given by the following diagram:

A D(A)c D(A)c/DTor(A)c (D(A)/DTor(A))
c H0(C).YA π

G

H0(G̃)

Let j : {Li}i∈Z ↪→ Perf(QGr(A)) be the inclusion functor, where Li is as in the proof of

Lemma 3.9. Note that we think of {Li}i∈Z as a full subcategory of loc(qgr(A)) and use

Lemma 3.6. Then, we have an isomorphism of functors j ≃ G ◦H0(G̃) ◦ j. Since {Li}i∈Z
is BO-ample in loc(qgr(A)) from Lemma 3.9, we have G ◦ H0(G̃) ≃ IdPerf(QGr(A)) from

[LO10, Proposition 9.6]. This implies that ΦE ≃ F . The uniqueness of E follows from

[Gen16, Theorem 5.5]. □

Remark 3.11. In the proof of (3) of Theorem 3.10, to apply [Gen16, Theorem 5.5], we only

use the assumption that F is fully faithful.

In the proof of Lemma 3.9, when we check the condition (c), if we only haveH0(OA(i)) =

0 for i≪ 0, then we can obtain the result of the lemma. In particular, we have the following

simple version of Theorem 3.10 in the same way as the proof of Theorem 3.10.

Proposition 3.12. Let A,B be noetherian locally finite N-graded k-algebras. We assume

that A,B have balanced dualizing complexes. Let Perf(QGr(A)) → D(QGr(B)) be an

exact fully faithful functor. We assume that H0(QGr(A),OA(m)) = 0, m ≪ 0. Then, F

is of Fourier-Mukai type and the kernels are unique up to quasi-isomorphism.

4. Bondal-Orlov’s reconstruction theorem for noncommutative projective

schemes

Definition 4.1 ([BF21, page 1151, 1155]). We define a functor R′QA

R′QA : D(BiGr(A⊗k B)) → D(BiGr(A⊗k B)),

M 7→ R′QA(M) :=
⊕
v∈Z

RQA(M∗,v).

Similarly, we define a functor R′τA by R′τA(M) :=
⊕

v∈ZRτA(M∗,v).

We recall basic properties of RQ, Rτ , R′Q and R′τ in [BF21]. In the following, we

state the corresponding properties in the case of locally finite N-graded algebras. The

proofs are similar to the case of connected graded algebras.
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Lemma 4.2 (cf. [BF21, Lemma 3.35, Proposition 3.36, Proposition 3.41]). Let A,B

be finitely generated locally finite N-graded k-algebras. Let M ∈ D(Gr(A)) and P ∈
D(BiGr(A⊗k B)). Then, we have the following.

(1) We have distinguished triangles

RτA(M) →M → RQA(M) in D(Gr(A)),

R′τA(P ) →P → R′QA(P ) in D(BiGr(A⊗k B)),

RτA⊗kB(P ) →P → RQA⊗kB(P ) in D(BiGr(A⊗k B)).

(2) If A satisfies (EF), then RQA and RτA commute with coproducts.

(3) If A,B satisfy (EF) and τA, τB have finite cohomological dimension, then we have

RQA⊗kB(P ) ≃ (R′QA ◦R′QB)(P ) ≃ (R′QB ◦R′QA)(P )

in D(BiGr(A⊗k B)).

Remark 4.3. In [BF21, Proposition 3.41], A,B are assumed to be right noetherian. How-

ever, only Ext-finiteness of A,B is used in the proof of [BF21, Proposition 3.41]. So, we

replace the assumption by (EF) in Lemma 4.2.

The following lemma is a generalization of [BF21, Proposition 3.32] in the bimodule

setting.

Lemma 4.4. Let A be a finitely generated locally finite N-graded k-algebras. P ∈
D(BiGr(A⊗kB)). If A satisfies (EF) and τA has finite cohomological dimension, then we

have

(R′τA ◦R′τA)(P ) ≃ R′τA(P ),

(R′QA ◦R′QA)(P ) ≃ R′QA(P )

in D(BiGr(A⊗k B)).

Proof. From the definition of R′τA,

R′τA(P ) =
⊕
v∈Z

RτA(P∗,v).

For a fibrant object P ∈ BiGr(A ⊗k B), it is shown that τA(P∗,v) is τA-acyclic in [BF21,

Proposition 3.32]. This gives the first formula of the lemma. For the second formula, we

have the following triangles in D(BiGr(A⊗k B)) from (1) of Lemma 4.2:

(R′τA ◦R′τA(P )) →R′τA(P ) → (R′QA ◦R′τA)(P ),

(R′QA ◦R′τA)(P ) →R′QA(P ) → (R′QA ◦R′QA)(P ).

Now, from the first formula of the lemma, (R′QA ◦R′τA)(P ) is acyclic. Thus, we get the

second formula of the lemma. □

The following lemma is a generalization of [BF21, Proposition 4.5] in the bimodule

setting.

Lemma 4.5. Let A,B,C be finitely generated locally finite N-graded k-algebras. Let M ∈
D(BiGr(Bop ⊗k A)) and N ∈ D(BiGr(Cop ⊗k B)). Assume that RQA and RτA commute
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with coproducts. Then, we have natural isomorphisms in D(BiGr(Cop ⊗k A))

R′τA(N ⊗L
B M) ≃ N ⊗L

B R′τA(M),

R′QA(N ⊗L
B M) ≃ N ⊗L

B R′QA(M),

where B is the dg category associated to B.

Proof. The proof is similar to the proof of [BF21, Proposition 4.5]. However, for the sake

of completeness, we give a proof here. We only prove the second formula. Firstly, note

that N ⊗L
B M is calculated by using the bar complex

· · · → N ⊗k B ⊗k B ⊗k M → N ⊗k B ⊗k M → N ⊗k M → 0.

Here, N ⊗k B⊗n ⊗k M is a dg C-A-bimodule defined by

(N ⊗k B⊗n ⊗k M)i,j =
⊕

i0,··· ,in∈Z
Ni,i0 ⊗k B(i0, i1)⊗k · · · ⊗k B(in−1, in)⊗k Min,j ,

where B(i, j) := HomB(i, j) (i, j ∈ Z) (cf. [Kel94, Section 6.6]). We show that we have a

natural morphism

φn : N ⊗k B⊗n ⊗k

(⊕
v∈Z

Q′
A(RA(M∗,v))

)
→
⊕
v∈Z

Q′
A(N ⊗k B⊗n ⊗k RA(M∗,v))

and this map is an isomorphism for any n ∈ N. For simplicity, we put

Pj = RA(M∗,j),

V i
i0,··· ,in = Ni,i0 ⊗k B(i0, i1)⊗k · · · ⊗k B(in−1, in).

Then, we have the following:(
N ⊗k B⊗n ⊗k

(⊕
v∈Z

Q′
A(RA(M∗,v))

))
i,j

= lim−→
n

⊕
i0,··· ,in∈Z

V i
i0,··· ,in ⊗k HomGr(A)(A≥n, Pj(in)),

(⊕
v∈Z

Q′
A(N ⊗k B⊗n ⊗k RA(M∗,v))

)
i,j

= lim−→
n

HomGr(A)

A≥n,
⊕

i0,··· ,in∈Z
V i
i0,··· ,in ⊗k Pj(in)

 .

So, the map⊕
i0,··· ,in∈Z

V i
i0,··· ,in ⊗k HomGr(A)(A≥n, Pj(in)) → HomGr(A)

A≥n,
⊕

i0,··· ,in∈Z
V i
i0,··· ,in ⊗k Pj(in)

 ,

n⊗ bi0,i1 ⊗ · · · ⊗ bin−1,in ⊗ f 7→
(
a 7→ n⊗ bi0,i1 ⊗ · · · ⊗ bin−1,in ⊗ f(a)

)
defines the desired levelwise morphisms φn. The assumption that RQA commutes with

coproducts implies each φn is an isomorphism because V i
i0,··· ,in ⊗k Pj(in) is QA-acyclic (cf.

[BF21, Lemma 3.27]). □

The following lemma is a generalization of [BF21, Proposition 3.42] in arbitrary graded

finite A and Aop-modules.

Lemma 4.6. Let A be a noetherian locally finite N-graded k-algebra. Let M ∈ Gr(Aen)

be a finitely generated graded right and left A-module. We assume that A has a balanced

dualizing complex. Then, we have quasi-isomorphisms in D(Gr(Aen))

R′QA(M
bi) ≃ RQA⊗kAop(Mbi) ≃ R′QAop(Mbi),

where Mbi is the bimodule defined by Mbi :=
⊕

i,j∈ZM
bi
i,j =

⊕
i,j∈ZMi+j.
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Proof. The proof is similar to the proof of [BF21, Proposition 3.42]. However, for the sake

of completeness, we give the proof here.

For symmetry, we only show the first quasi-isomorphism. For any N ∈ BiGr(Aen), the

natural morphism

η : R′τAop(N) → N

is a quasi-isomorphism if and only if the natural morphism

ηu,∗ : RτAop(Nu,∗) → Nu,∗

is a quasi-isomorphism for any u ∈ Z. In addition, if the j-th cohomology of Nu,∗ is right

bounded for each j, then ηu,∗ is a quasi-isomorphism. We condier the caseN = R′τA(M
bi).

In this case,

Nu,∗ =
⊕
v′∈Z

RτA

(
Mbi

∗,v′
)
u
.

Then, we have the following isomorphism in D(BiGr(Aen))

Hj(Nu,∗) =
⊕
v′∈Z

RjτA

(
Mbi

∗,v′
)
u
≃
⊕
v′∈Z

RjτA(M(v′))u.

From [AZ94, Corollary 3.6 (3)] and the fact that τA commutes with the degree shift, we

have

RjτA(M(v′))u = RjτA(M)u+v′ = 0

for v′ ≫ 0 (we use the assumption that M is finitely generated here). So,

RτAop

(⊕
v′∈Z

RτA

(
Mbi

∗,v′
)
u

)
→
⊕
v′∈Z

RτA

(
Mbi

∗,v′
)
u

is a quasi-isomorphism for any u. We have the distinguished triangle

R′τAopR′τA(M
bi) → R′τA(M

bi) → R′QAopR′τA(M
bi).

So, we also have RQAopRτA(M
bi) is acyclic. Finally, because we have the triangle

R′QAop(R′τA(M
bi)) → R′QA(M

bi) → R′QAop(R′QA(M
bi)),

we get the desired quasi-isomorphism. □

The following lemma gives a formula for the kernel of the composition of Fourier-Mukai

functors.

Lemma 4.7. Let A,B,C be noetherian locally finite N-graded k-algebras. We assume that

A,B,C have balanced dualizing complexes. Let E = πAop⊗kB(E) ∈ D(QGr(Aop⊗kB)) and

F = πBop⊗kC(F ) ∈ D(QGr(Bop ⊗k C)), where E,F are objects in D(Gr(Aop ⊗k B)) and

D(Gr(Bop ⊗k C)), respectively. We set

G := πAop⊗kC(RωAop⊗kB(E)⊗
L
B RωBop⊗kC(F)) ∈ D(QBiGr(Aop ⊗k C)).

Then, we have a natural isomorphism

ΦF ◦ ΦE ≃ ΦG .
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Proof. We have the claim by the following calculation:

(ΦF ◦ ΦE)(−) ≃ πC(RQB(RωA(−)⊗L
A RωAop⊗kB(E))⊗

L
B RωBop⊗kC(F))

≃ πC((RωA(−)⊗L
A R′QBRωAop⊗kB(E))⊗

L
B RωBop⊗kC(F))

≃ πC((RωA(−)⊗L
A R′QBR

′QBR
′QA(E))⊗L

B RωBop⊗kC(F))

≃ πC((RωA(−)⊗L
A R′QBR

′QA(E))⊗L
B RωBop⊗kC(F))

≃ πC((RωA(−)⊗L
A RωAop⊗kB(E))⊗

L
B RωBop⊗kC(F))

≃ πC(RωA(−)⊗L
A (RωAop⊗kB(E)⊗

L
B RωBop⊗kC(F)))

≃ πC(RωA(−)⊗L
A RωAop⊗kC(πAop⊗kC(RωAop⊗kB(E)⊗

L
B RωBop⊗kC(F))))

≃ ΦG(−).

The second isomorphism is obtained by using Lemma 4.5. The third and fifth isomor-

phisms are obtained by using (3) of Lemma 4.2. The fourth isomorphism is obtained by

using Lemma 4.4. The sixth isomorphism is obtained by using the associativity of tensor

products. The seventh isomorphism is obtained by using (3) of Lemma 4.2, Lemma 4.4

and Lemma 4.5 repeatedly. □

Lemma 4.8. Let A be a noetherian locally finite N-graded k-algebra. We assume that

A has a balanced dualizing complex, qgr(A) has a canonical bimodule KA and the globel

dimension n of qgr(A) is larger than 0. Then, R1ΓmA(A) is a finite A-module.

Proof. We calculate H0(qgr(A),OA(m)) as follows:

H0(qgr(A),OA(m)) = Homqgr(A)(OA,OA(m))

= Homqgr(A)(OA(m),KA[n])

= Homqgr(A)(OA,KA(−m)[n])

= Hn(qgr(A),KA(−m)),

where we simply write KA for OA ⊗ KA. So, from the noncommutative Serre vanishing

theorem [AZ94, Theorem 7.4], we have H0(qgr(A),OA(m)) = 0 for m ≪ 0. This induces

that R1ΓmA(A) is a finite A-module from (⋆). □

Remark 4.9. From this lemma, we can apply Theorem 3.10 (and Proposition 3.12) in our

setting.

The following proposition is a generalization of [Huy06, Corollary 5.21] in noncommu-

tative projective geometry.

Proposition 4.10. Let A,B be noetherian locally finite N-graded k-algebras. We as-

sume that A,B have balanced dualizing complexes. We assume that qgr(A), qgr(B) have

canonical bimodules KA,KB, respectively.

Then,

Db(qgr(A)) ≃ Db(qgr(B)) ⇒ gl. dim(qgr(A)) = gl. dim(qgr(B)).

Proof. For simplicity, we set n = gl. dim(qgr(A)) and m = gl.dim(qgr(B)). Let F :

Db(qgr(A)) → Db(qgr(B)) be an equivalence. Then, from (3) of Theorem 3.10, we have

F ≃ ΦF for some F ∈ D(QGr(Aop ⊗k B)) and F is unique up to quasi-isomorphism.

Let G : Db(qgr(B)) → Db(qgr(A)) be the quasi-inverse of F . Then, G ≃ ΦG for some

G ∈ D(QGr(Bop ⊗k A)) and G is unique up to quasi-isomorphism. Note that when
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n = 0 or m = 0, (3) of Theorem 3.10 cannot be applied to at least one of F and G.

However, because we have an equivalence between Db
dg(qgr(A)) and Db

dg(qgr(B)) from

the uniqueness of dg enhancements and obtain an equivalence between Ddg(QGr(A)) and

Ddg(QGr(B)) from (†), so we can also take Fourier-Mukai functors as an equivalence

F : Db(qgr(A)) → Db(qgr(B)) and a quasi-inverse G of F (cf. [BF21, Corollary 4.18]).

Then, G is a left adjoint of F . Moreover, H := SDb(qgr(A)) ◦G◦S−1
Db(qgr(B))

is a right adjoint

of F ([Huy06, Remark 3.31]), where SDb(qgr(A)) (resp. SDb(qgr(B))) is the Serre functor

of Db(qgr(A)) (resp. Db(qgr(B))). Thus, we have G ≃ H. In addtition, SDb(qgr(A))

and SDb(qgr(B)) are given by − ⊗ πA
(
H−(n+1)(RA)

)
[n] and − ⊗ πB

(
H−(m+1)(RB)

)
[m],

respectively by our assumption. So, we have

SDb(qgr(A)) ≃ ΦπAen(H−(n+1)(Rbi
A ))[n],

SDb(qgr(B)) ≃ ΦπBen(H−(m+1)(Rbi
B ))[m],

where Rbi
A and Rbi

B are the associated objects of RA and RB in D(BiGr(A ⊗k A
op)) and

D(BiGr(B ⊗k B
op)), respectively. From Lemma 4.7, the kernel E ′′ of G ◦ S−1

Db(qgr(B))
is

given by

E ′′ = πA⊗kBop(RQBop⊗kB(H
−(m+1)(Rbi

B)
∨)⊗L

B RωA⊗kBop(E ′))[−m],

where (−)∨ = HomB(−, B). By using Lemma 4.7 again, the kernel E ′′′ of H is given by

E ′′′ = πA⊗kBop(RωA⊗kBop(E ′′)⊗L
A RQAop⊗kA(H

−(n+1)(Rbi
A )))[n].

For simplicity, we putMA = H−(n+1)(RA) andMB = H−(m+1)(RB). By using Lemma 4.2,

Lemma 4.4, Lemma 4.5 and Lemma 4.6 repeatedly, we arrange E ′′′ as follows:

E ′′′ = πA⊗kBop(RQA⊗kBop(RQBop⊗kB(M
bi∨
B )⊗L

B RωA⊗kBop(E ′))⊗L
A RQAop⊗kA(M

bi
A ))[n−m]

= πA⊗kBop((R′QBop ◦RQBop⊗kB)(M
bi∨
B )⊗L

B (R′QA ◦RωBop⊗kA)(E ′)⊗L
A RQAop⊗kA(M

bi
A ))[n−m]

= πA⊗kBop(RQBop⊗kB(M
bi∨
B )⊗L

B RωBop⊗kA(E
′)⊗L

A RQAop⊗kA(M
bi
A ))[n−m]

= πA⊗kBop(R′QBop(Mbi∨
B )⊗L

B RωBop⊗kA(E
′)⊗L

A R′QA(M
bi
A ))[n−m]

= πA⊗kBop(R′QBop(Mbi∨
B ⊗L

B RωBop⊗kA(E
′)⊗L

A R′QA(M
bi
A )))[n−m]

= πA⊗kBop((R′QBop ◦R′QA)(M
bi∨
B ⊗L

B RωBop⊗kA(E
′)⊗L

A R′QA(M
bi
A )))[n−m]

= (πA⊗kBop ◦RQA⊗kBop)(Mbi∨
B ⊗L

B RωBop⊗kA(E
′)⊗L

A M
bi
A )[n−m]

= πA⊗kBop(Mbi∨
B ⊗L

B RωBop⊗kA(E
′)⊗L

A M
bi
A )[n−m]

= πA⊗kBop(Mbi∨
B ⊗B RωBop⊗kA(E

′)⊗A M
bi
A )[n−m].

From (3) of Theorem 3.10 (see also Remark 3.11), we have an quasi-isomorphism

πA⊗kBop(RωBop⊗kA(E
′)) ≃ πA⊗kBop(Mbi∨

B ⊗B RωBop⊗kA(E
′)⊗A M

bi
A )[n−m]

in D(QGr(A⊗k B
op)). This induces n = m. □

Definition 4.11. Let A be a noetherian locally finite N-graded k-algebra. We assume

that qgr(A) has a canonical bimodule KA. We define the canonical graded k-algebra

Rcan(qgr(A)) of A by Rcan(qgr(A)) = B(qgr(A),OA,−⊗KA). We define the anti-canonical

graded k-algebra Ranti-can(qgr(A)), similarly.

The following proposition is a generalization of [Huy06, proposition 6.1] in the noncom-

mutative setting.
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Proposition 4.12. Let A,B be noetherian locally finite N-graded k-algebras. We as-

sume that A,B have balanced dualizing complexes. We assume that qgr(A), qgr(B) have

canonical bimodules KA,KB. Then,

Db(qgr(A)) ≃ Db(qgr(B)) =⇒ Rcan(qgr(A)) ≃ Rcan(qgr(B)),

Ranti-can(qgr(A)) ≃ Ranti-can(qgr(B))

as graded k-algebras.

Proof. We only show the isomorphism of canonical graded k-algebras.

Step 1. Let F : Db(qgr(A)) → Db(qgr(B)) be an equivalence. Then, from (3) of The-

orem 3.10, we have F ≃ ΦF for some F ∈ D(QGr(Aop ⊗k B)) and F is unique up to

quasi-isomorphism. Let G : Db(qgr(B)) → Db(qgr(A)) be the quasi-inverse of F . Then,

G ≃ ΦG for some G ∈ D(QGr(Bop ⊗k A)) and G is unique up to quasi-isomorphism. Note

that when n = 0 or m = 0, (3) of Theorem 3.10 cannot be applied to at least one of F

and G. However, because we have an equivalence between Db
dg(qgr(A)) and D

b
dg(qgr(B))

from the uniqueness of dg enhancements and obtain an equivalence between Ddg(QGr(A))

and Ddg(QGr(B)) from (†), so we can also take Fourier-Mukai functors as an equivalence

F : Db(qgr(A)) → Db(qgr(B)) and a quasi-inverse G of F (cf. [BF21, Corollary 4.18]).

Because Aop ⊗k B ≃ Aop ⊗k (B
op)op and Bop ⊗k A ≃ Bop ⊗k (A

op)op, F ,G determine

the functors

Φ′
F : Db(qgr(Bop)) → Db(qgr(Aop)),

Φ′
G : Db(qgr(Aop)) → Db(qgr(Bop)).

We show that Φ′
F and Φ′

G are equivalences. We consider the kernel E of the functor

Φ′
F ◦ Φ′

G . By using Lemma 4.7, we have

E = πAop⊗kA(RωBop⊗k(Aop)op(G)⊗L
Bop RωAop⊗k(Bop)op(F)) ∈ D(QGr(Aop ⊗k A)).

So, to prove that Φ′
F ◦ Φ′

G is the identity functor, it is enough to show that

E ≃ πAop⊗kA(RωAop⊗kB(F)⊗L
B RωBop⊗kA(G)). (∗)

because the right hand side of this isomorphism is quasi-isomorphic to πAop⊗kA(A
bi) by

the uniqueness of Fourier-Mukai kernels. The isomorphism (∗) follows from the following

sub-lemma.

Sub-Lemma 4.13. Let A,B and C be dg categories. Let M be a dg A-B-bimodule and N

be a dg B-C-bimodule. Then, we have a natural isomorphism of dg A-C-bimodules

M ⊗B N ≃ N ⊗Bop M.

Proof of Sub-Lemma 4.13. Note that for any a ∈ A, c ∈ C, (M ⊗B N)(a, c) is given by

(M ⊗B N)(a, c) =

∫ b∈B
M(a, b)⊗k N(b, c).

So, the claim is proved by the following coend calculation:

(M ⊗B N)(a, c) =

∫ b∈B
M(a, b)⊗k N(b, c)

≃
∫ b∈Bop

N(b, c)⊗k M(a, b) = (N ⊗Bop M)(a, c).

□
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In the same way, we can show that Φ′
G ◦Φ′

F is isomorphic to the identity functor. Thus,

Φ′
F and Φ′

G are equivalences.

Step 2. Let H := RωAop⊗kB(F)⊗k Rω(Aop)op⊗kBop(G). Then, H defines the functor

Φ̃H : D(QBiGr(A⊗k A
op)) → D(QBiGr(B ⊗k B

op)),

Φ̃H(−) = πB⊗kBop(RωA⊗kAop(−)⊗L
A⊗Aop H).

This functor is an equivalence since ΦF and Φ′
G are equivalences (in detail, see Re-

mark 4.15).

As in the proof of Proposition 4.10, we put MA = H−(n+1)(RA) and MB =

H−(m+1)(RB), where n,m are the global dimensions of qgr(A), qgr(B). We also put

Ml = Φ̃H(πA⊗kAop(M⊗l bi
A )). Then, we show that

ΦMl
: D(QGr(B)) → D(QGr(B))

induces the functor

ΦMl
: Db(qgr(B)) → Db(qgr(B)).

and ΦMl
is an equivalence. To see this, we prove that Ml is quasi-isomorphic to the kernel

of the composition of the following functors:

Db(qgr(B)) Db(qgr(A)) Db(qgr(A)) Db(qgr(B)).
ΦG

Φ
πA⊗kAop(M⊗l bi

A ) ΦF

Here, we need the following sub-lemma.

Sub-Lemma 4.14. Let A,B be dg categories. Let L be a dg A-A-bimodule, M be a dg

A-B-bimodule and N be a dg Aop-Bop-bimodule. Then, we have a natural isomorphism of

dg B-B-bimodules

L⊗Aen (M ⊗k N) ≃ N ⊗A (L⊗A M).

Proof of Sub-Lemma 4.14. This is proved by the following coend calculation:

(L⊗Aen (M ⊗k N))(b, b′) =

∫ (a,a′)∈A⊗Aop

L(a′, a)⊗k (M(a, b)⊗k N(a′, b′))

≃
∫ (a,a′)∈A⊗A

N(a′, b′)⊗k (L(a
′, a)⊗k M(a, b))

≃
∫ a′∈A ∫ a∈A

N(a′, b′)⊗k (L(a
′, a)⊗k M(a, b))

≃
∫ a′∈A

N(a′, b′)⊗k

∫ a∈A
L(a′, a)⊗k M(a, b)

≃
∫ a′∈A

N(a′, b′)⊗k (L⊗A M)(a′, b)

= (N ⊗A (L⊗A M))(b, b′).

At the third equality, we use Fubini theorem ([Gen17, Proposition 3.12], [Ima24, Proposi-

tion 2.17]). At the fourth equality, we use [Ima24, Proposition 2.15]. □
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We see that the kernel of ΦF ◦ ΦπA⊗kAop(M⊗l bi
A ) ◦ ΦG is isomorphic to Ml. Actually,

from Lemma 4.4, Lemma 4.5, Lemma 4.7 and Sub-Lemma 4.14, we have(
the kernel of ΦF ◦ ΦπA⊗kAop(M⊗l bi

A ) ◦ ΦG

)
≃ πBen(RQBop⊗kA(RωBop⊗kA(G)⊗

L
A RQAen(M⊗l bi

A ))⊗L
A RωAop⊗kB(F))

≃ πBen(RωBop⊗kA(G)⊗
L
A RQAen(M⊗l bi

A )⊗L
A RωAop⊗kB(F))

≃ Ml.

Note that ΦπA⊗kAop(M⊗l bi
A ) ≃ S l

A[−ln], where SA is the Serre functor of Db(qgr(A)). So,

since Serre functors commute with equivalences, we have ΦMl
≃ SB[−ln]. Moreover,

by Proposition 4.10 and the uniqueness of Fourier-Mukai kernels ((3) of Theorem 3.10),

we have Ml ≃ πB⊗kBop(M⊗l bi
B ). Thus, for all l ∈ Z, we have Φ̃H(πA⊗kAop(M⊗l bi

A )) ≃
πB⊗kBop(M⊗l bi

B ).

Step 3. Since Φ̃H is an equivalence, we have

HomD(QBiGr(A⊗kAop))(πA⊗kAop(M⊗l1 bi
A ), πA⊗kAop(M⊗l2 bi

A ))

≃ HomD(QBiGr(B⊗kBop))(πB⊗kBop(M⊗l1 bi
B ), πB⊗kBop(M⊗l2 bi

B ))

for all l1, l2 ∈ Z. In particular, we have

H0(qgr(A), πA(M
⊗l
A ))

≃ HomD(QBiGr(A⊗kAop))(πA⊗kAop(Abi), πA⊗kAop(M⊗l bi
A ))

≃ HomD(QBiGr(B⊗kBop))(πB⊗kBop(Bbi), πB⊗kBop(M⊗l bi
B ))

≃ H0(qgr(B), πB(M
⊗l
B ))

for all l ∈ Z. Here, the first isomorphism is obtained as follows: we have

H0(qgr(A), πA(M
⊗l
A )) = Homqgr(A)(πA(A), πA(M

⊗l
A ))

≃ HomD(GrA)(A,RQA(M
⊗l
A ))

≃ H0(RHomGrA(A,RQA(M
⊗l
A )))

≃ HomGrA(A,RQA(M
⊗l
A ))

≃ H0(RQA(M
⊗l
A ))0

≃ QA(M
⊗l
A )0

and

HomD(QBiGr(A⊗kAop))(πA⊗kAop(Abi), πA⊗kAop(M⊗l bi
A ))

≃ HomD(QBiGr(A⊗kAop))(πA⊗kAop((Abi)≥0,≥0), πA⊗kAop(M⊗l bi
A ))

≃ HomD(BiGr(A⊗kAop))((A
bi)≥0,≥0,RQA⊗kAop(M⊗l bi

A ))

≃ H0(RHomBiGr(A⊗kAop)((A
bi)≥0,≥0,RQA⊗kAop(M⊗l bi

A )))

≃ HomBiGr(A⊗kAop)((A
bi)≥0,≥0,RQA⊗kAop(M⊗l bi

A ))

≃ H0(RQA⊗kAop(M⊗l bi
A ))0,0

≃ H0(R′QA(M
⊗l bi
A ))0,0

≃ QA(M
⊗l
A )0.
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Note that in the above calculation, we use Lemma 4.6, the fact that (Abi)≥0,≥0 is a projec-

tive object in BiGr(A⊗kA
op) and an isomorphism πA⊗kAop(Abi) ≃ πA⊗kAop((Abi)≥0,≥0) ∈

QBiGr(A⊗k A
op), which is obtained from the definition of QBiGr(A⊗k A

op).

Thus, we obtain a graded k-algebra isomorphism Rcan(qgr(A)) ≃ Rcan(qgr(B)).

□

Remark 4.15. We explain the reason why Φ̃H is an equivalence in this remark. Let H′ :=

RωAop⊗k(Bop)op(G)⊗k RωBop⊗kA(F). We define the functor

Φ̃H′ : D(QBiGr(B ⊗k B
op)) → D(QBiGr(A⊗k A

op))

Φ̃H′(−) = πA⊗kAop(RωB⊗kBop(−)⊗L
B⊗Bop H′).

Then, we calculate Φ̃H′ ◦ Φ̃H

Φ̃H′ ◦ Φ̃H(−) = πAen(RωBen(πBen(RωAen(−)⊗L
Aen H))⊗L

Ben H′)

= πAen(RQBen(RωAen(−)⊗L
Aen H)⊗L

Ben H′)

= πAen(RωAen(−)⊗L
Aen R′QBen(H)⊗L

Ben H′)

= πAen(RωAen(−)⊗L
Aen H⊗L

Ben H′)

= πAen(RωAen(−)⊗L
Aen RQAen(Abi ⊗k A

bi))

= πAen(RωAen(−))

= IdD(QBiGr(A⊗kAop))(−).

In the same way, we can show that Φ̃H ◦ Φ̃H′ is isomorphic to the identity functor. In the

above calculation, we use the following formulas about functors on the derived categories

of Z4-graded Aen ⊗k B
en-modules, where we regard Aen ⊗k B

en as an N4-graded algebra

by the natural N4-grading:

(1) RQAen⊗kBen ≃ R′QAen ◦ R′QBen ≃ R′QBen ◦ R′QAen , where functors R′QAen ,

R′QBen andRQAen⊗kBen are functors fromD(BiGr(Aen⊗kB
en)) toD(BiGr(Aen⊗k

Ben)). They are defined in the same way as in R′QA,R
′QB and RQA⊗kB. We also

have similar functors such as R′QA⊗kBop and R′QAop⊗kB, which are endofunctors

of D(BiGr(A⊗k B
op)) and D(BiGr(Aop ⊗k B)), respectively.

(2) RQAen⊗kBen(M ⊗k N) ≃ RQAen(M) ⊗k RQBen(N) for M ∈ D(BiGr(Aen)) and

N ∈ D(BiGr(Ben)). We also have similar formulas such as R′QAen⊗kBen(M ⊗k

N) ≃ R′QA⊗kBop(M) ⊗k R′QAop⊗kB(N) for M ∈ D(BiGr(A ⊗k B
op)) and N ∈

D(BiGr(Aop ⊗k B)).

(3) The projection formula: RQBen(N ⊗L
Aen M) ≃ N ⊗L

Aen R′QBen(M) for M ∈
D(BiGr(Aen ⊗k B

en)) and N ∈ D(BiGr(Aen)).

(1) is proved in the same way as [BF21, Proposition 3.41] (see also Lemma 4.2). (2) is

proved by using (1) and a direct calculation. (3) is proved in the same way as Lemma 4.5.

The main reason why the similar proofs work is that Aen, Ben and Aen ⊗k B
en are finitely

generated as k-algebras and RQAen ,RQBen commute with arbitrary direct sums because

RQAen = R′QA ◦R′QAop ,RQBen = R′QB ◦R′QBop and RQA,RQAop ,RQB,RQBop com-

mute with arbitrary direct sums.

To prove the main theorem, we need to recall the definition of AZ-(anti-)ampleness.

Definition 4.16 ([AZ94, page 250]). Let (O, s) be an algebraic pair for a k-linear category

C. Then, (O, s) is AZ (Artin-Zhang)-ample if
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(a) for every M ∈ C, there are l1, · · · , lp ∈ N and an epimorphism
⊕p

i=1 s
−lp(O) → M

in C,
(b) for every epimorphism f : M → N in C, there exists n0 such that the natural

map HomC(O, sn(f)) : HomC(O, sn(M)) → HomC(O, sn(N )) for all n ≥ n0 is

surjective.

In addition, we call (O, s) AZ-anti-ample if (O, s−1) is AZ-ample.

The following theorem shows the importance of AZ-(anti-)ampleness in noncommutative

projective geometry.

Theorem 4.17 ([AZ94, Theorem 4.5]). Let (O, s) be an algebraic pair for a k-linear

category C.
(1) We assume that

(AZ-1) O is noetherian,

(AZ-2) HomC(O,O) is a right noetherian ring and HomC(O,M) is a finite

HomC(O,O)-module for all M ∈ C,
(AZ-3) s is AZ-ample.

Let B := B(C,O, s)≥0. Then, B is a right noetherian N-graded k-algebra and we

have an isomorphism of algebraic triples

(C,O, s) ≃ (qgr(B),OB, (1)B).

(2) Let A be a right noetherian N-graded k-algebra satisfying the χ-condition. Then,

(AZ-1), (AZ-2) and (AZ-3) are satisfied for (qgr(A),OA, (1)A).

Now, we can prove Bondal-Orlov’s reconstruction theorem in noncommutative projec-

tive geometry.

Theorem 4.18. Let A,B be noetherian locally finite N-graded k-algebras. We assume that

A,B have balanced dualizing complexes. We assume that qgr(A), qgr(B) have canonical

bimodules KA,KB, respectively.

If −⊗KA,−⊗KB are AZ-(anti-)ample, then

Db(qgr(A)) ≃ Db(qgr(B)) ⇒ qgr(A) ≃ qgr(B).

Proof. We assume that −⊗KA,−⊗KB are AZ-anti-ample. Then, from Proposition 4.12,

we have

Ranti-can(qgr(A))≥0 ≃ Ranti-can(qgr(B))≥0

as graded k-algebras. Since A,B satisfies the χ-condition, so

qgr(A) ≃ qgr(Ranti-can(qgr(A))≥0) ≃ qgr(Ranti-can(qgr(B))≥0) ≃ qgr(B)

by Theorem 4.17. In the case that − ⊗ KA,− ⊗ KB are AZ-ample, we can prove the

theorem in a similar way.

□

In the following, we give an application of the argument of Theorem 4.18 for AS-regular

algebras. We recall the definitions of AS-regular algebras and AS-Gorenstein algebras

below.

Definition 4.19 ([AZ94, Section 8], [MM11, Definition 3.1]). A locally finite N-graded
k-algebra A is called AS-regular (resp. AS-Gorenstein) over R = A0 if A satisfies the

following conditions:
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(1) gl.dim(A) = d <∞ and gl.dim(R) <∞
(resp. inj. dimA(A) = inj.dimAop(A) = d <∞),

(2) There exists an integer l such that

ExtiA(R,A) = ExtiAop(R,A) =

{
R(l) if i = d,

0 otherwise,

where l is called the Gorenstein parameter of A.

We also define a graded module twisted by a graded automorphism of a graded algebra.

Let A be an N-graded k-algebra. Let σ be a graded automorphism of A. For a graded

A-module M , we define Mσ ∈ Gr(A) by Mσ := M as a graded k-module and the new

right A-module structure is given by m · a = mσ(a) for m ∈M and a ∈ A.

Lemma 4.20 ([MM11, Corollary 3.14]). Let A be a noetherian AS-regular algebra over

R = A0 of global dimension n with the Gorenstein parameter l. Then, A has a balanced

dualizing complex given by Aν(−l)[n] ∈ Gr(Aen) for some graded automorphism ν of A. ν

is called the generalized Nakayama automorphism of A.

The application of Theorem 4.18 is the following corollary.

Corollary 4.21. Let A,B be noetherian AS-regular algebras over R = A0 and S = B0,

respectively. Then,

Db(qgr(A)) ≃ Db(qgr(B)) ⇒ qgr(A) ≃ qgr(B).

Proof. If the Gorenstein parameters of A,B are lA, lB and the global dimensions of

A,B are nA, nB, then A[lA], B[lB ] are AS-regular algebras of dimensions nA, nB over(
A[lA]

)
0
,
(
B[lB ]

)
0
, respectively ([MU21, Corollary 4.4]). In addition, the Gorenstein pa-

rameters of A[lA], B[lB ] are 1. From Lemma 4.20, we have the balanced dualizing complexes

of A[lA], B[lB ] given by A
[lA]
ν1 (−1)[nA], B

[lB ]
ν2 (−1)[nB] for some graded automorphisms ν1, ν2

of A[lA], B[lB ], respectively. This means that − ⊗ KA[lA] ,− ⊗ KB[lB ] are AZ-anti-ample.

Moreover, we have

Db
(
qgr

(
A[lA]

))
≃ Db(qgr(A)) ≃ Db(qgr(B)) ≃ Db

(
qgr

(
B[lB ]

))
from Lemma 3.8. So, we apply Theorem 4.18 to obtain qgr

(
A[lA]

)
≃ qgr

(
B[lB ]

)
and then

qgr(A) ≃ qgr(B).

□
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